Improved darunavir genotypic mutation score predicting treatment response for patients infected with HIV-1 subtype B and non-subtype B receiving a salvage regimen

TitleImproved darunavir genotypic mutation score predicting treatment response for patients infected with HIV-1 subtype B and non-subtype B receiving a salvage regimen
Publication TypeJournal Article
Year of Publication2016
AuthorsDe Luca A., Flandre P., Dunn D, Zazzi M, Wensing A., Santoro MM, Gunthard H.F, Wittkop L., Kordossis T., Garcia F., Castagna A., Cozzi-Lepri A, Churchill D, De Wit S., Brockmeyer N.H, Imaz A., Mussini C, Obel N., Perno CF, Roca B., Reiss P., Schulter E., Torti C., van Sighem A, Zangerle R., Descamps D.
JournalJ Antimicrob Chemother
Volume71
Pagination1352-60
Date Published2016-05
ISBN Number0305-7453
Accession Number26825119
Abstract

OBJECTIVES: The objective of this study was to improve the prediction of the impact of HIV-1 protease mutations in different viral subtypes on virological response to darunavir. METHODS: Darunavir-containing treatment change episodes (TCEs) in patients previously failing PIs were selected from large European databases. HIV-1 subtype B-infected patients were used as the derivation dataset and HIV-1 non-B-infected patients were used as the validation dataset. The adjusted association of each mutation with week 8 HIV RNA change from baseline was analysed by linear regression. A prediction model was derived based on best subset least squares estimation with mutational weights corresponding to regression coefficients. Virological outcome prediction accuracy was compared with that from existing genotypic resistance interpretation systems (GISs) (ANRS 2013, Rega 9.1.0 and HIVdb 7.0). RESULTS: TCEs were selected from 681 subtype B-infected and 199 non-B-infected adults. Accompanying drugs were NRTIs in 87%, NNRTIs in 27% and raltegravir or maraviroc or enfuvirtide in 53%. The prediction model included weighted protease mutations, HIV RNA, CD4 and activity of accompanying drugs. The model's association with week 8 HIV RNA change in the subtype B (derivation) set was R(2) = 0.47 [average squared error (ASE) = 0.67, P < 10(-6)]; in the non-B (validation) set, ASE was 0.91. Accuracy investigated by means of area under the receiver operating characteristic curves with a binary response (above the threshold value of HIV RNA reduction) showed that our final model outperformed models with existing interpretation systems in both training and validation sets. CONCLUSIONS: A model with a new darunavir-weighted mutation score outperformed existing GISs in both B and non-B subtypes in predicting virological response to darunavir.

Short TitleThe Journal of antimicrobial chemotherapy
Alternate JournalThe Journal of antimicrobial chemotherapy